Content recommendation engine is an analytic tool to generate meaningful recommendations to specific users about products or items they might be interested in. Content recommendation engine works on the search keywords used by the user, which help in describing the items the user is looking for, as well as on the user profile, which later helps in indicating the type of items or products the user prefers. In order to create a user profile, the recommendation engine focuses on the history of the user’s interactions with the engine. For instance, recommending news articles on the basis of browsing of news is useful; however, what is desirable is when music, videos, and products from different services are also recommended to the user based on his browsing history.

Increase in emphasis on enhancing customer experience is a key factor expected to drive the content recommendation engine market during the forecast period. Rapid digitization is anticipated to boost the deployment of content recommendation engine platforms. Furthermore, increasing need for analyzing large volume of customer data is expected to propel the content recommendation engine market. In addition, rise in use of artificial intelligence in recommendation engine to offer personalized customer experience is expected to create lucrative opportunities for the content recommendation engine market. However, protecting sensitive information of customers, lack of technical expertise, and issues related to infrastructural and technological compatibilities are estimated to hamper the content recommendation engine market during the forecast period.

The global content recommendation engine market can be segmented based on component, deployment, type, enterprise size, end-user industry, and geography. In terms of component, the market can be classified into solutions and services. The services segment of the content recommendation engine market is expected to grow significantly due to the increasing need of the recommendation engine in the field of consulting services, development services, training services, support services, implementation services, and many more. Based on deployment, the market can be classified into cloud and on-premise. The cloud segment is expected to grow at a higher growth rate during the forecast period as cloud-based content recommendation engine offers better and wider solutions to the end-user. On the basis of type, the content recommendation engine market can be segmented into collaborative filtering, hybrid recommendation, and content-based filtering. The collaborative filtering segment is anticipated to hold the dominant share of the market as this technique uses a large volume of information such as users’ preferences, behavior, and activities to segment users based on similarity of likings. Based on enterprise size, the content recommendation engine market can be divided into small and medium enterprises and large enterprises. The large enterprise size segment is expected to hold the leading share of the market during the forecast period. In terms of end-user industry, the content recommendation engine market can be classified into retail, consumer goods, media and entertainment, gaming, e-commerce, hospitality, and others.

By geography, the global content recommendation engine market can be segmented into North America, South America, Asia Pacific, Europe, and Middle East & Africa. The content recommendation engine market in North America is anticipated to expand at a substantial growth rate during the forecast period. This is due to technological advancement and high emphasis on technology innovation in the region. Asia Pacific is expected to be a lucrative market for content recommendation engine during the forecast period due to the rapid digitization activities in the region.

The global content recommendation engine market is characterized by the presence of several key players. Major players of the content recommendation engine market compete with other players based on features, such as, price and quality. Key players operating in the global content recommendation engine market include Boomtrain, Amazon Web Services, Curata, Cxense, Kibo Commerce, Revcontent, ThinkAnalytics, Outbrain, Uberflip, IBM, and Dynamic Yield.

The report offers a comprehensive evaluation of the market. It does so via in-depth qualitative insights, historical data, and verifiable projections about market size. The projections featured in the report have been derived using proven research methodologies and assumptions. By doing so, the research report serves as a repository of analysis and information for every facet of the market, including but not limited to: Regional markets, technology, types, and applications.

The study is a source of reliable data on:

  • Market segments and sub-segments
  • Market trends and dynamics
  • Supply and demand
  • Market size
  • Current trends/opportunities/challenges
  • Competitive landscape
  • Technological breakthroughs
  • Value chain and stakeholder analysis

The regional analysis covers:

  • North America (U.S. and Canada)
  • Latin America (Mexico, Brazil, Peru, Chile, and others)
  • Western Europe (Germany, U.K., France, Spain, Italy, Nordic countries, Belgium, Netherlands, and Luxembourg)
  • Eastern Europe (Poland and Russia)
  • Asia Pacific (China, India, Japan, ASEAN, Australia, and New Zealand)
  • Middle East and Africa (GCC, Southern Africa, and North Africa)

The report has been compiled through extensive primary research (through interviews, surveys, and observations of seasoned analysts) and secondary research (which entails reputable paid sources, trade journals, and industry body databases). The report also features a complete qualitative and quantitative assessment by analyzing data gathered from industry analysts and market participants across key points in the industry’s value chain.

A separate analysis of prevailing trends in the parent market, macro- and micro-economic indicators, and regulations and mandates is included under the purview of the study. By doing so, the report projects the attractiveness of each major segment over the forecast period.

Highlights of the report:

  • A complete backdrop analysis, which includes an assessment of the parent market
  • Important changes in market dynamics
  • Market segmentation up to the second or third level
  • Historical, current, and projected size of the market from the standpoint of both value and volume
  • Reporting and evaluation of recent industry developments
  • Market shares and strategies of key players
  • Emerging niche segments and regional markets
  • An objective assessment of the trajectory of the market
  • Recommendations to companies for strengthening their foothold in the market   

Note: Although care has been taken to maintain the highest levels of accuracy in TMR’s reports, recent market/vendor-specific changes may take time to reflect in the analysis.

Custom Market Research Services

TMR offers custom market research services that help clients to get information on their business scenario required where syndicated solutions are not enough.


Content Recommendation Engine Market

Pre Book