Automotive Edge Computing: Introduction
- The automotive industry is witnessing rapid change, and edge computing is expected to be a big part of this change. Advancements in information technology, which include new sensors and better data processing and control, are likely to transform the transportation system from a conventional technology-driven system into a more powerful data-driven system. This movement is projected to generate a tremendous amount of real-time data from self-driving vehicles, driver-monitoring systems, and surveillance cameras for artificial intelligence algorithms to harness.
- Edge computing comprises compute storage, data management, data analysis, and networking technologies. The edge allows for real-time data processing, which enables applications and devices to react to data instantaneously.
- Autonomous vehicles are connecting to the edge to improve safety, enhance efficiency, reduce accidents, and decrease traffic congestion. These cars are equipped with various sensors, and a large amount of data created by these sensors needs to be processed quickly.
Key Drivers of Global Automotive Edge Computing Market
- Machine learning algorithms utilized in self-driving cars extract insights from raw data to determine road conditions and make decisions based on them. This may include pedestrian locations, road conditions, light levels, driving conditions, and objects around the vehicle. All of these factors produce enormous amounts of data that must be processed on the edge. This, in turn, drives the automotive edge computing market across the globe.
- Edge computing is anticipated to enable vehicles and other connected devices to have their data processes in much closer proximity, reducing the amount of data that flows back and forth between the cloud and the edge of the network. Edge computing enables local data storage, which is key for several applications such as SOTA. This capability improves the customer experience and optimize costs. Edge computing helps address rising security concerns about connected vehicles and devices. The management and deployment of localized security policies enables end-to-end security from a vehicle or device to the cloud and also provides the real-time threat detection at the edge of the network. All these factors are likely to propel the automotive edge computing market across the globe.
Demand for V2X Technology in Autonomous Driving Systems to Offer Significant Opportunities
- V2X technology alleviates the huge computing demand on autonomous driving edge computing systems. V2X is defined as a vehicle communication system that focuses primarily on vehicle-to-vehicle (V2V) and vehicle-to-infrastructure (V2I) goals. Conventional autonomous driving systems require expensive sensors and edge computing equipment within the vehicle; however, V2X takes a different and potentially complementary approach by investing in road infrastructure, thus reducing the computing and sensing costs in vehicles.
- Rapid deployment of edge computing facilities in road infrastructure is prompting an increasing number of autonomous driving applications to start leveraging V2X communications to make the in-vehicle edge computing system more efficient. One popular direction is cooperative autonomous driving. The cooperation of autonomous driving edge computing systems with V2X technology makes it possible to build a safe and efficient autonomous driving system. Therefore, demand for V2X technology in autonomous driving systems is anticipated to create lucrative opportunities for the automotive edge computing market.
Complexity in Integration with Existing Cloud Architecture to Hamper Market
- Integrating edge computing applications and platforms with the existing cloud architecture is necessary to understand the potential of edge computing. The limited storage and computing capability of edge nodes require a well-equipped system between edge and the cloud. Increasing adoption of multi-cloud infrastructure within autonomous vehicles and establishing a reliable edge network to handle the network traffic from multiple nodes are likely to pose a challenge for automotive edge computing.
North America to Hold Major Share of Global Automotive Edge Computing Market:
- North America accounted for a prominent share of the global edge computing market. It is projected to maintain its dominant position in the global market during the forecast period, as the consumer and business sectors in the region rely on IoT devices. Higher rate of adoption of cloud in the region is further contributing to the continued transition toward digitization. Development of innovative concepts, such as autonomous cars in North America is also expected to propel the market in the region in the next few years.
- North America is also home to a high number of edge computing vendors and witnesses a high rate of adoption of new technology among enterprises for leveraging new technologies, such as 5G, which in turn is further boosting the market in the region
Key Players Operating in Global Market
The global automotive edge computing market is consolidated with top players across the global market. A few of the key players operating and potential in the global automotive edge computing market are:
- Aricent Inc.
- Amazon Web Services (AWS) Inc.
- Belden Inc.
- Cisco Systems Inc.
- Digi International Inc.
- Dell Inc.
- Hewlett Packard Enterprise Development LP
- INVERS GmbH
- IBM
- Microsoft
- Oracle
- Siemens
Global Automotive Edge Computing Market: Research Scope
Global Automotive Edge Computing Market, by Deployment
Global Automotive Edge Computing Market, by Component
- Hardware
- Software
- Services
Global Automotive Edge Computing Market, by Application
- Connected Cars
- Internet of Things (IOT)
- Traffic Management
- Remote Monitoring
- Augmented Reality (AR) and Virtual Reality (VR)
- Smart Cities
- Transportation & Logistics
- Others
Global Automotive Edge Computing Market, by Region
- North America
- Europe
- Germany
- France
- U.K.
- Italy
- Spain
- Russia & CIS
- Rest of Europe
- Asia Pacific
- China
- Japan
- India
- ASEAN
- Rest of Asia Pacific
- Latin America
- Brazil
- Mexico
- Rest of Latin America
- Middle East & Africa
- GCC
- South Africa
- Rest of Middle East & Africa